
itsh5py
Release 0.7.2

Max Elfner

Jan 28, 2023

CONTENTS

1 Installation 3
1.1 Limitations and warning . 3

2 Tutorial 5
2.1 Attributes . 9
2.2 h5py Backend . 10
2.3 Queue System . 10

3 Usage 11
3.1 itsh5py.save . 11
3.2 itsh5py.load . 12
3.3 itsh5py.LazyHdfDict . 12
3.4 itsh5py.queue_handler . 14
3.5 itsh5py.config . 14

4 Releases 17
4.1 0.7.2 . 17
4.2 0.7.1 . 17
4.3 0.7.0 . 17

Python Module Index 19

Index 21

i

ii

itsh5py, Release 0.7.2

While there are many ways to store different data types, many of them have their drawbacks. hdf is a common way to
store large arrays. Sometimes it can be practical to store arrays with additional (pythonic) data in a single file. While
hdf attributes can support some types, many exception exists especially with python types.

This is a small implementation of recursive dict support for python to write and read hdf-files with many different
pythonic data types. Almost all types implemented in default python and numpy should be supported, even in nested
structures. The resulting files work in hdfview and panoply with some small drawbacks.

A major convenience is the ability to store iterables like lists and tuples, even in nested form. Mixed types are also
supported.

Conversion, obscuration or changes to the saved types are kept at the bare minimum. So if, for any reasons, the files
have to be used without itsh5py, all the data will be accessible with just a little added inconvenience.

CONTENTS 1

https://www.hdfgroup.org

itsh5py, Release 0.7.2

2 CONTENTS

CHAPTER

ONE

INSTALLATION

itsh5py is available on PyPI and can be readily installed via

pip install itsh5py

Run pip uninstall itsh5py in order to remove the package from your system.

To work, this requires some additional packages. Obviously, h5py is used for data storage. numpy is used for array
handling. DataFrames are also supported using pandas. Finally, for serialization of difficult data types, yaml is used
via pyyaml.

All the source packages above are available on PyPI for all common OS.

1.1 Limitations and warning

Some limitation still exist:

• While most of the core data types should be implemented, there is arbitrary complexity especially with nested
iterables. Most likely there are still some cases and types which are not supported and may fail with different
levels of grace. Since this package will most likely be used for data storage please always consider checking if
your type is saved and loaded correctly. If in doubt, always open the file with h5py.File() and check. Feel
free to report missing or buggy data types and they will be implemented if possible.

• numpy object arrays are not supported.

• Keys of the dictionary which will be saved should only be strings to avoid any ambiguity. Any other types are
not tested and most likely will fail.

• Lazy slicing of arrays is not supported (yet).

• Long tuples and mixed type lists will be saved element-wise and thus be slow. This is recognizable starting at
approx. 100 elements.

• Path object are supported as single datasets or as list or tuple iterables - however only non nested type.

• Closing a LazyHdfDict will close the file reference - even if another LazyHdfDict accesses the same file (which
should not happen too often).

3

https://pypi.org/project/itsh5py

itsh5py, Release 0.7.2

4 Chapter 1. Installation

CHAPTER

TWO

TUTORIAL

Let’s start with some sample data: Some coordinate arrays and a derived data field:

import numpy as np
import itsh5py

Taken from mayavi examples!
x, y = np.mgrid[-5.:5.:200j, -5.:5:200j]
z = np.sin(x + y) + np.sin(2 * x - y) + np.cos(3 * x + 4 * y)

Saving this to hdf is obviously easy and possible with h5py. But it would mean creating a file, datasets and filling this
manually. Using itsh5py, this is as easy as

5

itsh5py, Release 0.7.2

itsh5py.save('demo', {'x': x, 'y': y, 'data': z})

Still, this is a default hdf file which can be opened and inspected in tools like hdfview or Panoply:

However, sometimes you just need to store some metadata with your file and attributes just won’t do it. Most of the
types used in python are supported, thus

itsh5py.save('demo2', {'x': x, 'y': y, 'data': z, 'meta': ['type1', 2.]})

This can be inspected too:

6 Chapter 2. Tutorial

https://www.giss.nasa.gov/tools/panoply/

itsh5py, Release 0.7.2

As you can see, a mixed list is split into its elements since this type is not supported by hdf. For other types, other
conversions exist. They will be visible when opening the files using h5py or similar but when loading them using
itsh5py, they are converted back.

Loading can be done in two ways: Lazy, which keeps everything possible with weak references (default) or just loading
all data. If lazy is active, the result is a LazyHdfDict:

lazy_demo = itsh5py.load('demo')
lazy_demo_2 = itsh5py.load('demo2')
itsh5py.config.use_lazy = False
basic_demo = itsh5py.load('demo')
basic_demo_2 = itsh5py.load('demo2')

Inspecting the results shows the following:

basic_demo
{

'data': array([[0.59925318, 0.47366702, 0.38353246, ..., -0.93771155,
-0.65135851, -0.36662565],
[0.52598534, 0.43316361, 0.37683558, ..., -0.80275349,
-0.52186765, -0.24853893],
[0.46326134, 0.40428732, 0.38196713, ..., -0.66053162,
-0.39007068, -0.13290833],
...,
[1.24416509, 1.14695653, 1.03256892, ..., -2.31421298,
-2.40068459, -2.44342076],
[1.09745781, 0.99214212, 0.87544695, ..., -2.36468556,
-2.42493877, -2.44148253],

(continues on next page)

7

itsh5py, Release 0.7.2

(continued from previous page)

[0.93395003, 0.82435405, 0.70941222, ..., -2.3818948 ,
-2.41563926, -2.40663759]]),

'x': array([[-5. , -5. , -5. , ..., -5. ,
-5. , -5.],
[-4.94974874, -4.94974874, -4.94974874, ..., -4.94974874,
-4.94974874, -4.94974874],
[-4.89949749, -4.89949749, -4.89949749, ..., -4.89949749,
-4.89949749, -4.89949749],
...,
[4.89949749, 4.89949749, 4.89949749, ..., 4.89949749,
4.89949749, 4.89949749],

[4.94974874, 4.94974874, 4.94974874, ..., 4.94974874,
4.94974874, 4.94974874],

[5. , 5. , 5. , ..., 5. ,
5. , 5.]]),

'y': array([[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

...,
[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.]])

}

basic_demo_2
{

'data': array([[0.59925318, 0.47366702, 0.38353246, ..., -0.93771155,
-0.65135851, -0.36662565],
[0.52598534, 0.43316361, 0.37683558, ..., -0.80275349,
-0.52186765, -0.24853893],
[0.46326134, 0.40428732, 0.38196713, ..., -0.66053162,
-0.39007068, -0.13290833],
...,
[1.24416509, 1.14695653, 1.03256892, ..., -2.31421298,
-2.40068459, -2.44342076],
[1.09745781, 0.99214212, 0.87544695, ..., -2.36468556,
-2.42493877, -2.44148253],
[0.93395003, 0.82435405, 0.70941222, ..., -2.3818948 ,
-2.41563926, -2.40663759]]),

'meta': ['type1', 2.0],
'x': array([[-5. , -5. , -5. , ..., -5. ,

-5. , -5.],
[-4.94974874, -4.94974874, -4.94974874, ..., -4.94974874,
-4.94974874, -4.94974874],
[-4.89949749, -4.89949749, -4.89949749, ..., -4.89949749,
-4.89949749, -4.89949749],

(continues on next page)

8 Chapter 2. Tutorial

itsh5py, Release 0.7.2

(continued from previous page)

...,
[4.89949749, 4.89949749, 4.89949749, ..., 4.89949749,
4.89949749, 4.89949749],

[4.94974874, 4.94974874, 4.94974874, ..., 4.94974874,
4.94974874, 4.94974874],

[5. , 5. , 5. , ..., 5. ,
5. , 5.]]),

'y': array([[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

...,
[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.],

[-5. , -4.94974874, -4.89949749, ..., 4.89949749,
4.94974874, 5.]])

}

Which is, while not pretty, what was expected since it’s the same as the input.

Taking a look at the LazyHdfDict, this is structured better:

demo.hdf
/data::(200, 200)
/x::(200, 200)
/y::(200, 200)

demo2.hdf
/data::(200, 200)
Group /meta
/meta/i_0::b'type1'
/meta/i_1::2.0

/x::(200, 200)
/y::(200, 200)

You can always unlazy a LazyHdfDict by either calling dict() or using the .unlazy()method. The latter is a wrapper
that takes care of closing the then unused reference.

2.1 Attributes

Attributes can be used to add (scalar) quantities to hdf types (Files, Groups, Datasets). They can be loaded using the
unpack_attrs option to itsh5py.load() which will place them in a dict called attrs. This is off by default.
Otherwise, they can be accessed via the h5py backend, see below.

To quickly store some attributes with your data, you can use the same attrs key:

file = itsh5py.save('demo_att',
{'x': x, 'y': y, 'data': z,

(continues on next page)

2.1. Attributes 9

itsh5py, Release 0.7.2

(continued from previous page)

'attrs': {'additional_str': 'meta_string',
'addition_float': 100.,
},

})
reloaded = itsh5py.load(file)

reloaded:

demo_att.hdf
/data::(200, 200)
/x::(200, 200)
/y::(200, 200)

While the attribute were added to the file, they are not loaded by default. Access them via either of the two methods:

[f'{k}: {v} (Type {type(v)})' for k, v in reloaded.h5file.attrs.items()]
["addition_float: 100.0 (Type <class 'numpy.float64'>)",
"additional_str: meta_string (Type <class 'str'>)"]

reloaded = itsh5py.load(file, unpack_attrs=True)
reloaded['attrs']
{'addition_float': 100.0, 'additional_str': 'meta_string'}

2.2 h5py Backend

After loading lazy (by default), the underlying hdf can be accessed via the LazyHdfDict.h5file property. This
allows the creation, extraction, slicing and so on with all basic h5py methods on the file.

2.3 Queue System

Open files (at least lazy ones) are stored in a queue. The handling Functions are mostly hidden and do not need to
be accessed. However there are two things to not here: The amount of files open at once can be controlled via the
itsh5py.max_open_files attribute. Currently open files can be shown using

itsh5py.open_filenames()
['demo2.hdf', 'demo.hdf']

There might be situations where large amounts of open files can be present, e.g. in list comprehensions. This can be
handled in two ways:

1. Setting itsh5py.max_open_files to a large number. Be aware that this, combined with unlazy files, can be
difficult for RAM and slow down the process considerably.

2. Using itsh5.config.allow_fallback_open = True (defaults to False). Since closing a LazyHdfDict
does not remove the python instance, this allows to reopen a file on the fly to access unwrapped data from a
previously open file. This will only open the file to get the data and subsequently close it again, preventing
memory issues but also slowing down the process.

10 Chapter 2. Tutorial

CHAPTER

THREE

USAGE

Overview documentation of the public API functions.

save Adds keys of given dict as groups and values as datasets
to the given hdf-file (by string or object) or group object.

load Returns a dictionary containing the groups as keys and
the datasets as values from given hdf file.

LazyHdfDict Helps loading data only if values from the dict are re-
quested.

queue_handler Base module to handle the queue of open (in memory)
files.

config Package-wide config options

3.1 itsh5py.save

itsh5py.save(hdf, data, compress=(True, 5), packer=<function pack_dataset>, *args, **kwargs)
Adds keys of given dict as groups and values as datasets to the given hdf-file (by string or object) or group object.
Iterative dicts are supported.

The dict can have the attrs key containing a dict of key, value pairs which are added as root level attributes to the
hdf file. Those must be scalar, else exceptions will occur.

*args and **kwargs will be passed to the h5py.File constructor.

Parameters

• hdf (string, Path) – Path to File

• data (dict) – The dictionary containing only string or tuple keys and data values or dicts as
above again.

• packer (callable) – Callable gets hdfobject, key, value as input. hdfobject is considered to
be either a h5py.File or a h5py.Group. key is the name of the dataset. value is the dataset to
be packed and accepted by h5py. Defaults to pack_dataset()

• compress (tuple) – Try to compress arrays, use carefully. If on, gzip mode is used in every
case. Defaults to (False, 0). When (True,. . .) the second element specifies the level from
0-9, see h5py doc.

Returns
hdf – Path to new file

Return type
string

11

itsh5py, Release 0.7.2

3.2 itsh5py.load

itsh5py.load(hdf, unpack_attrs=False, unpacker=<function unpack_dataset>)
Returns a dictionary containing the groups as keys and the datasets as values from given hdf file.

Parameters

• hdf (string, Path) – Path to hdf file.

• unpack_attrs (bool, optional) – If True attrs from h5 file will be unpacked and are available
as dict key attrs, no matter if lazy or not. Defaults to False.

• unpacker (callable) – Unpack function gets value of type h5py.Dataset. Must return the
data you would like to have it in the returned dict.

Returns
result – The dictionary containing all groupnames as keys and datasets as values. Can be lazy
and thus not unwrapped.

Return type
dict, LazyHdfDict

3.3 itsh5py.LazyHdfDict

class itsh5py.LazyHdfDict(_h5file=None, group='/', *args, **kwargs)
Helps loading data only if values from the dict are requested. This is done by reimplementing the __getitem__
method from dict. Other convenience functions are added to work with the hdf files as backend.

Parameters

• _h5file ('h5py.File', optional) – h5py File object or None

• group (str, optional) – Group to anchor the LazyHdfDict into.

• args – Passed to the parent UserDcit implemented type.

• kwargs – Passed to the parent UserDcit implemented type.

__init__(_h5file=None, group='/', *args, **kwargs)

12 Chapter 3. Usage

itsh5py, Release 0.7.2

Methods

__init__([_h5file, group])

clear()

close() Closes the h5file if provided at initialization.
copy()

fromkeys(iterable[, value])

get(k[,d])

items()

keys()

pop(k[,d]) If key is not found, d is returned if given, otherwise
KeyError is raised.

popitem() as a 2-tuple; but raise KeyError if D is empty.
setdefault(k[,d])

unlazy() Unpacks all datasets and closes the Lazy reference
update([E,]**F) If E present and has a .keys() method, does: for k in

E: D[k] = E[k] If E present and lacks .keys() method,
does: for (k, v) in E: D[k] = v In either case, this is
followed by: for k, v in F.items(): D[k] = v

values()

Attributes

group Root group of the LazyHdfDict.
h5file File handle of the h5py.File() object behind the Lazy-

HdfDict.

property h5file

File handle of the h5py.File() object behind the LazyHdfDict.

property group

Root group of the LazyHdfDict.

unlazy()

Unpacks all datasets and closes the Lazy reference

close()

Closes the h5file if provided at initialization.

Unpackig will keep on working using the fallback routine if enabled.

3.3. itsh5py.LazyHdfDict 13

itsh5py, Release 0.7.2

3.4 itsh5py.queue_handler

Base module to handle the queue of open (in memory) files. The main important settings of how many filse are allowed
(max_open_files) and the currently open files are exposed in the main API.

Functions

add_open_file(lazy_dict) Adds a file (or better a LazyDict reference) to the queue.
cleanup() This will be run atexit and ensures that no references per-

sist in memory and all hdf files are freed.
close(lazy_dict) Closes a LazyDict.
is_open(filepath) Checks if a file is in the queue and thus oenened in mem-

ory.
open_filenames() Show file paths of open files
remove_from_queue(file) Removes file from the queue and from memory.

itsh5py.queue_handler.add_open_file(lazy_dict)
Adds a file (or better a LazyDict reference) to the queue.

itsh5py.queue_handler.is_open(filepath)
Checks if a file is in the queue and thus oenened in memory.

itsh5py.queue_handler.remove_from_queue(file)
Removes file from the queue and from memory. Only if file exists.

This is more complicated than it should be. The issue is that in the queue the actual LazyHdfDict are stored and
comparison of those on remove can fail. So comaprison is done on file name basis and removal via index.

itsh5py.queue_handler.close(lazy_dict)
Closes a LazyDict. This is a small wrapper to check if close will work.

itsh5py.queue_handler.open_filenames()

Show file paths of open files

itsh5py.queue_handler.cleanup()

This will be run atexit and ensures that no references persist in memory and all hdf files are freed.

3.5 itsh5py.config

Package-wide config options

default_suffix: str, defaults to .hdf
Default suffix to use for saveing hdf files.

use_lazy: bool, defaults to True
Default setting for lazyness on loading.

default_compression: tuple, defaults to (True, 5)
Default setting for gzip compression. First element is yes or no, second is level of compression. See h5py docs
for more details.

14 Chapter 3. Usage

itsh5py, Release 0.7.2

allow_fallback_open: bool, defaults to True
If an item is unwrapped from a closed file (e.g. when holding many files open in long list comprehension), this
allows a quick reopen and getting of a specified item. This can substantially slow down data handling, increase
memory load and lead to access errors on files open by other applications.

allow_overwrite: bool, defaults to False
If set to True, files will be overwritten if existing without warning. On default value of False the file mode will
be a which is safe but can lead to exceptions if datasets already exist.

squeeze_single: bool, defaults to False
If set to True, unpacked data containing a single key will be unpacked. This can lead to issues with single key
dicts containing sub dicts, thus the default is the safer version (False)

max_tree_children: int, defaults to 30
Maximum number of children in a group for the tree view to keep recursing. This can help to reduce tree size
with very large files.

3.5. itsh5py.config 15

itsh5py, Release 0.7.2

16 Chapter 3. Usage

CHAPTER

FOUR

RELEASES

4.1 0.7.2

This is just a maintenance release after some time with just a small QoL feature when working with large files.

• Published on 2023-01-28

• Added support for the new config max_tree_children to reduce too large tree views with a default of 30
elements per group.

• Fixed some minor issues in the documentation

• Set minimum versions for dependencies

• Minimum Python version is set at 3.7 still - this might change when h5py updates their requirement.

• Increased some backend versions to reflect some changes in the past

4.2 0.7.1

• Published on 2022-2-2

• Changed affiliations and contact for main author

• Some minor code style changes

4.3 0.7.0

• Published on 2021-08-09

• Initial Release on PyPI

17

https://pypi.org/project/itsh5py/0.7.2
https://pypi.org/project/itsh5py/0.7.1
https://pypi.org/project/itsh5py/0.7.0

itsh5py, Release 0.7.2

18 Chapter 4. Releases

PYTHON MODULE INDEX

i
itsh5py.config, 14
itsh5py.queue_handler, 14

19

itsh5py, Release 0.7.2

20 Python Module Index

INDEX

Symbols
__init__() (itsh5py.LazyHdfDict method), 12

A
add_open_file() (in module itsh5py.queue_handler),

14

C
cleanup() (in module itsh5py.queue_handler), 14
close() (in module itsh5py.queue_handler), 14
close() (itsh5py.LazyHdfDict method), 13

G
group (itsh5py.LazyHdfDict property), 13

H
h5file (itsh5py.LazyHdfDict property), 13

I
is_open() (in module itsh5py.queue_handler), 14
itsh5py.config

module, 14
itsh5py.queue_handler

module, 14

L
LazyHdfDict (class in itsh5py), 12
load() (in module itsh5py), 12

M
module
itsh5py.config, 14
itsh5py.queue_handler, 14

O
open_filenames() (in module itsh5py.queue_handler),

14

R
remove_from_queue() (in module

itsh5py.queue_handler), 14

S
save() (in module itsh5py), 11

U
unlazy() (itsh5py.LazyHdfDict method), 13

21

	Installation
	Limitations and warning

	Tutorial
	Attributes
	h5py Backend
	Queue System

	Usage
	itsh5py.save
	itsh5py.load
	itsh5py.LazyHdfDict
	itsh5py.queue_handler
	itsh5py.config

	Releases
	0.7.2
	0.7.1
	0.7.0

	Python Module Index
	Index

